Locks and Keys in Thief: The Dark Project

Wherein all the documentation which has been waiting to get done about doors and locks gets done in one fell swoop, and some of it is even general to the Dark Engine and relevant to System Shock 2.

The Lock service and Key service

Fundamental to the usage of many object types in Thief is the notion that an object can be locked, preventing it from being effectively frobbed. This is obviously most relevant in the case of doors, but the concept of a lock is generic and can be applied to a variety of object types. So, for example, containers can be locked to prevent them from issuing their contents, and levers can be locked to prevent them from being flipped. In fact, the lock service in the Dark Engine makes no assumptions about the meaning of being locked: all it does is determine whether an object is locked or unlocked, and provide an interface for communicating this information to the object scripts. It is the object scripts which determine the implications of being locked.

The basic mechanism of identifying whether an object is locked is the Locked property. If this property is present on an object, and the value of the property is TRUE, then the lock service will consider the object locked should any object script happen to want to know. If the property is FALSE or if it is not present, then the object is considered unlocked. Usually object scripts will make a further differentiation between these two cases, considering any object without the Locked property to not “have a lock,” and be incapable of becoming locked.

In addition, there are circumstances where we want the lock state on an object to actually reside on some other object. For example, a door may want to have its lock controlled by an external lock box (for various reasons, which will be considered later). In support of this the lock service recognizes Lock links when considering whether an object is locked. If an object has a Lock link to a locked object, it is considered locked regardless of its own state or the data from any other Lock links. One implication of this is that an object may have multiple locks associated with it, any one of which will prevent the object’s use if locked.

In addition to the lock service, there is a key service whose purpose is to determine which keys work on which objects, via matching KeySrc properties (on keys) and KeyDst properties (on doors and such). Each of these properties has three fields: a Master Bit, a Region ID, and a Lock ID. The Master Bit can be used to create “master keys” which subsume the function of a variety of other different keys. The Region ID is used primarily to define what collections of locks a particular master key might work on. In the simplest case, then, assume that there are no master keys, and therefore everything might as well be considered in the same region. In such a case, only the Lock ID determines whether a particular key works on a given lock.

Moreover, the Region ID is actually considered as a bitfield, so the same key service can be used to implement either an Underworld-style set of locks and keys (where each key opens a particular “flavor” of lock) or a System Shock-style set of access cards (where each card carries with it one or more “flavors” of security clearance).

The least you need to know (in Thief): If no “Master Bit” is ever set TRUE, then all “Region ID’s” should be set to the same (non-zero) value. To make simple, matching categories of keys and locks, give each set of keys a Lock ID equal to the Lock ID of the matching locks.

In a mission which includes master keys, or adheres more to the “security codes” model, it is necessary to understand the interpretation of these properties more precisely. A given KeySrc and KeyDst are considered to match according to the following rules, applied in order:

1.
If their Region ID’s have no bits in common, then they do not match.

2.
If the KeySrc Master Bit is TRUE, they match.

3.
If the KeySrc and KeyDst are equal, they match.

4.
They don’t match.

Example: A mission includes two mansions, the manor of Lord Hatfield and the manor of Lord McCoy. Each mansion has various locks which are opened by different keys. Moreover, there exists a master key to Lord Hatfield’s mansion.

All locks and keys which pertain to Lord Hatfield’s mansion are given a Region ID of 1. Those for Lord McCoy’s mansion have a Region ID of 2. The Lock ID’s of the keys in each mansion can be assigned independently; neither key can effect a lock in the other mansion because it will fail Rule 1 before it ever gets to try Rule 3. Finally, the master key for Lord Hatfield’s manor is given a Master Bit of TRUE and a Region ID of 1. It will pass Rule 1 and then succeed Rule 2, opening any lock in the manor regardless of their Lock ID’s.

Note that this notion of “Region” does not have to be interpreted geographically. So, if one found it convenient, one could assign a particular Region to all a mission’s doors, and a different Region to chests.

Example: The personnel on Sentinel Station are issued keycards indicating what security clearances they have. Security clearances are assigned by department, to secure that department’s facilities. The clearance codes are MAINTENANCE (1), MEDICAL (2), ADMINISTRATIVE (4), and SECURITY (8). All keycards and locks have Master Bit FALSE and Lock ID’s of 0, so only region ID’s are compared. Security keycards allow access to any department’s facilities, so they have Region ID 15 (1+2+4+8). All other departments have access only to their own facilities, so their cards’ Region ID’s are 1, 2, and 4.

The least you need to know (in System Shock 2): The “Master Bit” and “Lock ID” fields are not generally used. Each possible bit of “Region ID” corresponds to a flavor of security clearance. Each locked door should have one bit of security clearance set. Keycards can have any number of security clearances set, allowing access to all such doors.

Forcing Doors

Doors can take damage and be “slain” in the damage system, just like anything else, though they will take minimal damage, if any, from poke attacks. The result of a door being “slain,” however, is handled in the door script instead of being left to the usual defaults (removing the object, leaving a corpse, and such). This script removes the Locked property and all Lock links from the door, if present, and opens the door. Forcing a door will generally require repeated blows, however, and the sounds of these blows will be accorded the same high significance as the sounds of combat for AI purposes. Forcing a door, then, is by no means a stealthy option even when it is possible.

It is not necessary that all doors be susceptible to this treatment. If a door does not have the HitPoints property, it cannot take damage or be “slain.” In general, all-metal doors cannot be forced, while wood and metal-reinforced wood can, though the latter type will take more of a beating. Under the impending system where door surface textures are settable as properties indepedent of the door model (see below), each such texture will probably be packaged with the appropriate material properties in a metaproperty. So, for example, you would select a particular wooden texture for the door by setting a metaproperty, and this metaproperty would also include the appropriate settings for hit points and collision sound schema.

Design of Doors:

Types of Doors

There are two main types of doors used in Thief, differentiated by their modes of motion. These are translating (or sliding) and rotating (or spinning). Sliding doors are more frequently used in Hammer areas, and are frequently presented as controlled by hidden mechanisms. Rotating doors are found in more general use, and are almost always presented as being muscle-powered by their users. Moreover, the presentation of locking mechanisms will be different between the two types of door (see below).

Translating doors use the “TransDoor” property (Door->Translating on the hierarchy editor) to describe their motion. Its parameters include the range and direction of motion. Rotating doors use the “RotDoor” or Door->Rotating property. Its parameters include the axis of rotation, direction of motion (clockwise or counter-clockwise, as viewed from the positive direction of the axis, which is up in the case of vertial doors), and range of motion (expressed in degrees). Note that the axis of rotation in the door property only controls the orientation of the axis, not its location. The door always rotates around its physics model’s center of gravity, which is determined in the door’s PhysOBB property. This value is calculated based on the other setting in the door property so that doors will rotate around the appropriate edges of their models. If a door is not rotating around the right axis, that means its PhysOBB settings are wrong. To correct the problem, remove the PhysOBB property and the RotDoor property, and then reinstantiate the RotDoor property. A PhysOBB will be added automatically, which should have the right settings.

Double doors, consisting of two objects, but acting as a single synchronized construct, will be specifically supported in the door service. This feature is yet to be implemented, so much of the following information remains conjectural. Double doors are not a separate type of door per se, but a grouping construct that can be applied to any sets of doors. Double doors are grouped using a reserved type of link, the Synchronize link. The direction of the link does not matter. Whenever a door begins opening or closing, the door service will synchronize any doors with which it has Synchronize links so that they are acting similarly. This guarantees that acting to open or close either door is reflected in both doors, but does not guarantee perfect synchronization. The doors can get out of synchronization, for example if they move at different speeds or if one of them is blocked by some object.

In the near future, the selection of door archetypes will be revised to organize doors entirely according to their size, shape, and the presence or absence of a built-in lock assembly (see below). Variations in door surface texture (and therefore, in material composition) will be settable on doors of any model as metaproperties. This will probably require a certain amount of replacement of doors already placed in mission areas, so designers should be aware of this issue.

Representing Locks

Doors and lockboxes will visually represent the state of their locks. This is primarily intended to give feedback to the player when the lock locks or unlocks, especially as an adjunct to lockpicking, where unlocking may be a multi-stage process.

The visual design of locking mechanisms to show this state will be standardized along a model which is similar to the action of a lever-arm door handle. The lockbox, or cylinder assembly of the door or chest, will have a protruding lever arm on a rotating joint. This arm will be held horizontal (and, in the case of a door cylinder, pointing away from from the door frame) when the lock is locked. When the lock opens, the arm will pivot to vertical (pointing downward). In the case of a multi-stage lockpicking attempt, the arm may pivot only partway. This indicates that the lockpicking attempt is proceeding, but until the arm has pivoted to vertical, the lock remains locked.

[image: image1.png]ey

[image: image2.png]ey

The action of the lever arm on locks is controlled by the object’s scripts. Initializing the position of the lever arm to correspond with the lock state will be handled by the same script, at simulation start. So, it may not yet be initialized to the correct position if you look at it in the editor.

In general, sliding doors will be designed without visible lock assemblies, and you should use an external lock box to indicate their lock. Naturally, all lock boxes should be placed so that their association with a door is fairly obvious. Conventional pivoting doors will come in different models, some with lock assemblies and some without. If the door is to be locked and unlocked, you should choose a model which has a lock assembly which can indicate its state. Pivoting doors should not normally be locked with lockboxes.

Note that as of this writing, only a small number of prototype object models are available with such jointed lock assemblies.

� EMBED Photoshop.Image.4 \s ���

Figure � SEQ Figure * ARABIC �1�: Action of a lock assembly

_960619596.psd

