Using Archetype Scripts

A large number of object types in Thief come ready-made with “generic” scripts which are specified at the archetype level. This results in certain behaviors which are standard to an object type, and which can be exploited by designers without further need to write scripts or even deal with the objects’ scripts property. In fact, you are probably already counting on more archetype scripts than you are aware of. For example, practically any object behavior based on frobbing objects, other than picking objects up and putting them down, is probably controlled by a script. This is how doors open and close, levers flip, and keys unlock locks.

Those are the simple cases, however, in that setting up the appropriate behaviors requires no work on the part of designers. If you place a door, it will open and close without you having to do anything else. Generally the fact that these things are controlled by scripts is only relevant when there’s a problem, usually because the mission is referring to the wrong script, to a script with an out-of-date version, or to no script at all. So, you have to be aware of this possibility, but generally you don’t have to do much to get the simple object behaviors you want.

But what if (for example), you want that lever to actually do something when you flip it, to actuate some remote-controlled effect and not just pointlessly flip? Now, clearly, you the mission designer need to do something. The very basis of the lever’s behavior is in its relationship to other objects in your mission area, so there’s clearly no way of describing that behavior entirely in the game system. What the game system can do, and does do, is to provide you with tools which make that description easy to construct in most cases.

These tools are the “generic” archetype scripts with which we will be primarily concerned. They are not “generic” in all cases the way that the door’s script is. Instead they are generic to common patterns of cases, like levers actuating simple effects on other objects, and they allow you to build behaviors which fit those patterns without needing new scripts. The way that you do this is to flesh out the pattern of behavior with properties and links on the objects in question.

In general, all relationships between objects in the Dark Engine are (or should be) specified using links. These links allow you to build systems of objects, such as the lever which opens and closes a door. For such a collection of objects to act as a related system, the objects must affect each other, and in scripts they do this by sending messages. In archetype-level scripts the most common messages are “TurnOn” and “TurnOff,” where different objects have different ideas about what it means to do these things. Some objects tend to work in terms of momentary events instead of changing states, but they still use the “TurnOn” message to know when to act. There are other messages which are sometimes used, too.

Following are specifications of the scripts on many object types in Thief. There are other scripted behaviors, but these include two categories of interest.

A. Those scripts which require set-up on the designer’s part, in order to build cause-and-effect systems.

B. Those scripts which are sufficiently fundamental to normal gameplay operations that designers should be generally aware of the script’s function in order to understand the specified object behavior, and better identify bugs when they occur.

Levers: Levers (and buttons) are the basic remote controls of practically any system of objects. Levers turn on their Tweq animations when frobbed, or reverse direction if they’re already in motion. Most levers actuate their effects upon finishing their animation and stopping in one of their two rest states. Some levers, the “jumper” levers, behave differently. Since these levers appear like an electrical switch with obvious open-circuit and closed-circuit states, they actuate their effects upon any change between open and closed circuit. In either case, levers respond to these state changes by sending messages to all objects to which they have a ControlDevice link. This message will be either TurnOn or TurnOff depending on what state the lever is entering.

Note that because levers can reverse direction while in motion, it is possible for a lever to send two TurnOn or TurnOff messages in a row. The scripts of objects which handle such messages are generally designed to take this possibility into account.

Levers will respond to TurnOn and TurnOff messages if they receive them, switching without being frobbed. Such switching will cause them to send their own messages, just as if the switch were because of a frob. In general, this functionality is expected to be more use on objects which don’t seem to be levers, but which can derive some of their behavior from the same script. For example, smelting cauldrons swing on a Tweq joint and cause certain effects when they change state, just like a lever. But they are meant to be controlled by “real” levers, not frobbed by the player (and they don’t happen to look like a lever).

Levers can also be locked, just like doors, preventing them from responding to frobs
. If a lever is frobbed while locked, it will not animate as normal in response. Instead, there is a facility to allow the designer to set up some alternate feedback mechanism for this case, such as a buzzer or flashing light. Link the lever to your error indicator via a ScriptParams link with the data “ErrorOutput.” That object will receive a TurnOn message when the locked lever is frobbed.

The least you need to know: levers flip when you frob them. When they flip from state to state, they send TurnOn and TurnOff messages, to which other objects can respond as they will. Those other objects are pointed to by the lever’s ControlDevice links, which you must place.

Buttons: Buttons behave a lot like levers, but they are designed to control momentary events, not state changes. A button will send a TurnOn message whenever it is frobbed.

Buttons will also react to physics collisions (against their front face only) the same way they would react to a frob. Currently this means that you can push buttons by ramming into them: this may or may not be what we want. The main desired behavior that this action supports is being able to press buttons by shooting them.

Animating lights: All animating lights can respond to TurnOn and TurnOff messages as you would expect. When a light is turned off, it will go immediately to zero brightness if its current mode is anything other than “smoothly brighten,” in which case it will change to “smoothly dim.” The mode the light was in while “on” will be saved as script state so that it can be restored if the light is turned on again. If a light is turned on without this state being saved (e.g., if the light was off to begin with instead of having been turned off), then the reverse of the above reasoning is applied. That is, the light will go immediately to full brightness unless its current mode is “smoothly dim,” in which case it will smoothly brighten.

If the light has a TweqFlicker property, the TurnOn message will activate the tweq and set the light to “flicker between min & max” mode. Only when the tweq completes will the light actually turn on (and trigger any objects it, in turn, controls). The TweqFlicker state should always be left with “Frame #” set to 1 in this case.

Books: Books, when frobbed in inventory, bring up the modal overlay of book art and text specified by their Book property. This behavior is shared by books and scrolls. In the future, only scrolls will be portable, and books will be read when they are frobbed in the world. If we find them to be necessary, plaques can easily be implemented to have the same behavior as books.

Containers: A container has a reference (via a Contains link) to one or more objects, which do not present themselves in the game world. The container’s script is responsible for moving these objects into the game world under the appropriate circumstances.

Containers in this sense, then, do not include such objects as crates and barrels, whose only purpose in the game world is as interesting physics objects. Such objects are specified not to ever have contents, nor indeed to be subject to frobs at all. This is because their primary role as physics toys suggests that there be a relatively large number of them in the game, and we don’t want to present a lot of empty “containers” which the player nevertheless feels required to search.

A typical container, would be something more along the lines of a footlocker, jewelry case, etc. Such objects should contain up to one other object apiece. When the container if frobbed, its contents are transferred directly to the frobber’s inventory. In the player-character’s case, the new object also becomes his current inventory selection, just as if the object had been picked up normally. Obviously, no object that could not ordinarily be picked up should be put in a container.

Containers may also have animation effects associated with opening them, to help make their frob effects more overt and expressive. A typical animation would be a box with a hinged lid, which swings open. Some containers may have locks, which will work just like door locks, preventing the container from being used until the lock is opened.

The least you need to know: Containers may contain another object, referred to by a Contains link. Frobbing the container acts the same as if you’d frobbed its contents to pick them up, possibly with some additional animation on the container’s part.

Some objects may “contain” other objects but yield them up in some other way. The object on a creature’s belt, for example, is contained by the creature, but is removed via the pickpocket interface.
Corpses: The cumbersome behaviors of corpses in the player’s inventory, such as slowing the player’s movement and disallowing equipping of any other items, are controlled by a script on the corpse.

Doors: Doors have a relatively sophisticated response to being frobbed. First, if the door is locked, a sound effect is played and nothing else occurs. The locking and unlocking behavior relating to keys is handled by the key script via a special script service.

If not locked, doors open and close when they’re frobbed. If frobbed while swinging, they reverse direction. If a door is slain (i.e., bashed down), it destroys all of its locks
 and opens. Doors respond to TurnOn and TurnOff messages by opening and closing (respectively), regardless of any locks.

When a door becomes unlocked, its script automatically swings it open. When locked, it automatically swings closed.

The various sounds made by opening and closing doors are also controlled from the script (at least at this time). The particular sounds that are played are determined by the “HackScriptSnds” properties on the object.

Elevators and waypoints: Elevators interpret TurnOn and TurnOff messages as “Up” and “Down.” The script examines the path of waypoints associated with the elevator (via TPath, TPathInit, and TpathNext links) finds either the highest or lowest point on the path, and directs the object toward that waypoint.

Elevators can also respond to the message “Call.” This message is generated by the script on terrain waypoints, and is a means of having the waypoint summon the elevator to it directly. A waypoint can be induced to call its elevator by sending a TurnOn message to the waypoint itself.

Example 1: An elevator has four waypoints on its path, connected in a simple cycle. Each of these waypoints represents a single floor where the elevator might stop. Call buttons are used to move the elevator. Each button is given a ControlDevice link to a destination waypoint. When a button is pushed, the waypoint it controls “turns on,” calling the elevator to that waypoint.

Example 2: An elevator’s path has only two stopping points, and we decide we’d rather just control it with a lever whose up and down positions correspond to the movement of the elevator. We simply connect the lever to the elevator itself via a ControlDevice link, and the elevator’s script figures out what waypoints to go to. It’s up to us to make sure that the lever’s “TurnOn” position is oriented up.

Whether due to a TurnOn, TurnOff, or Call message, any elevator that is impelled towards a certain waypoint will activate if need be, or just change course as appropriate if already active. It is worth noting that the elevator will move directly towards the waypoint in question; it will not attempt to pathfind along the waypoint links. So this behavior should only be counted on for fairly direct waypoint routes. The pathfinding behavior could be implemented fairly simply if needed.

Food: Food, when frobbed in inventory, makes a munching sound. The data on the food’s FrobInfo property, not the script, causes the food to be destroyed. It would be easy to have eating food heal you if we wanted to.

Keys: Keys use the key service to attempt to unlock whatever object they’re used on. In the future, keys will have a more sophisticated response to being frobbed in the world, in that they will only be picked up if the character does not already have a key of that type. For this reason, keys should not be put in containers (see above) unless there is no chance of such a conflict, because if a player cannot see that what he’s trying to pick up is a key, this behavior won’t make a whole lot of sense.

Holy Water Fonts: Holy water fonts have a script which causes them to issue forth a vial of holy water if frobbed. Fonts have a “charge” which depletes when they are used, and until they recharge they cannot be frobbed again. The recharging time can be edited by setting the “Frame #” field of the object’s TweqFlicker State property; each such “frame” is 10 seconds. The default is currently 5 minutes.

Holy water fonts indicate whether they are charged with an Anim Light, which is managed with the standard AnimLight script. They therefore respond to TurnOn and TurnOff messages by turning the light on and off, regardless of the state of their charge. It is very much not recommended that you do anything which would send them a TurnOn or TurnOff from any outside source. This may get more robust in the future, but sending them these messages yourself will probably never be a good idea.

Lock Boxes: Lock boxes respond to TurnOn messages by locking, and TurnOff messages by unlocking. Their script may also handle some of the sound effects that need to emanate from the box itself. The locking and unlocking behavior relating to keys is handled by the key script via a special script service.

Torches: Torches have all of the behaviors of any animating lights (see above), plus they can undergo scripted responses to Fire and Damp stimuli, which act equivalently to TurnOn and TurnOff messages. Torches also activate and deactivate their model animations in response to these changes.

Tweq Gizmos: Various archetypes have the “TweqOnOff” script to allow their tweq animations to be controlled by other objects. Generally this will include any gizmo with a tweq animation which can sensibly just run continuously when the gizmo is “on,” such as gears and turbines. These objects respond to TurnOn and TurnOff messages as you might expect, by activating and deactivating their tweq animations.

Weapons: All weapons, including arrows, swords, and the blackjack, use scripts to change the player arm and equip the new weapon when they are selected from the player’s inventory.

� For those familiar with the previous lever scripts, this allows us to duplicate the old “OkToTweq” behavior if need be, but in a way which is consistent with doors and probably more generally useful.

� Actually, the script is of course on all creatures who leave corpses; it’s just that only once the creature is dead can you actually pick it up. This change in the creature’s FrobInfo upon death is also in a script, by the way.

� Note that the door does not unlock its locks: it destroys them. It removes the Locked property from itself if present, and destroys and Lock links it may have with other objects. It becomes as if it were never locked at all, and therefore cannot be locked again by any ordinary means. Which is, I think, what we want when you break down a door.

� All of these elevator behaviors depend on the assumption that elevators are connected to fairly simple circuits of waypoints. “Fairly simple” in this case means that the most involved elevator path is still way fewer locations than, say, the AI pathfinding database, and that elevator paths do not branch (though they may cycle).

